Deutsch
    Lehrstuhl für Zell- und Entwicklungsbiologie

    Susanne Kramer

    Wer behauptet wie ein Baby zu schlafen, der hat keines.

    Susanne Kramer

    ... is a molecular biologist with a particular interest in spatial aspects of mRNA metabolism and posttranscriptional regulation of gene expression. Susanne received her degree in biochemistry at the Free University in Berlin in 2000, where she also started her PhD project in the laboratory of Professor Michael Boshart. She received her doctoral degree in 2005 at the LMU in Munich, followed by six years of postdoctoral studies at the Department of Biochemistry in Cambridge (UK) in the lab of Professor Mark Carrington. Susanne joined the Biocenter in November 2011. She is leading an independent, DFG funded Junior research group and has done her Habilitation in 2016.

     

    2016 Habilitation, University of Würzburg

    since 2011 Junior group leader, Cell and Developmental Biology, University of Würzburg

    2005-2011 Postdoc, Cambridge (UK)

    2005 Postdoc, LMU Munich

    2005 Dr. rer. nat, LMU Munich

     

    susanne.kramer(at)uni-wuerzburg.de

    Tel ++49 93131 86785

    Research synopsis

    Susanne has used the African trypanosome as a model system for 16 years and worked on two different aspects: During her PhD time she has characterized the trypanosome homologue to a protein kinase A, an enzyme that was suspected to mediate the cAMP signal that has been shown to mediate differentiation between the two different bloodstream form life-cycle stages of Trypanosoma brucei. During her Postdoc time in Cambridge, Susanne became interested in understanding post-transcriptional control mechanisms of gene expression: trypanosomes have almost no transcriptional control and are perfect model organisms for this research area. In particular, Susanne became very interested in RNP-granules, small ribonucleoprotein particles that can be best described as an ‘out-of-translation’ place for mRNAs with a potential function in mRNA storage, sorting and decay. The exact function of RNP granules still remains somewhat mysterious. During her Postdoc time in Cambridge, Susanne has characterised the RNA granule repertoire of trypanosomes as well as several key granule proteins. Later she realised that RNA granule research was seriously hampered by the lack of a method for granule purification. With her own group at the Biocenter in Würzburg, Susanne has therefore developed methods for RNA granule purification. With the granule’s protein and RNA content in hand Susanne is currently analysing granule function using a combination of biochemical, cell biological and molecular biological methods. Susanne believes that a better understanding of the spatial aspects of mRNA metabolism is essential to understand gene regulation.

     

    Key Publications

    Kramer S (2017) The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathog 13: e1006456

    Kramer S (2016) Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res 45: e49

    Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, Subota I, Schlosser A, Carrington M & Kramer S (2015) Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Res 43: 8013–8032

    Krüger T, Hofweber M & Kramer S (2013) SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell 24: 2098–2111

    Kramer S, Marnef A, Standart N & Carrington M (2012) Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J Cell Sci 125: 2896–2909

    Kramer S, Queiroz R, Ellis L, Hoheisel JD, Clayton CE & Carrington M (2010b) The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 123: 699–711

    Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton CE & Carrington M (2008) Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci 121: 3002–3014

    Contact

    Lehrstuhl für Zoologie I - Zell- und Entwicklungsbiologie
    Am Hubland
    97074 Würzburg

    Tel. +49 931 31-84250
    Fax: +49 931 31-84252

    Find Contact

    Hubland Süd Hubland Nord Campus Dallenberg Fabrikschleichach Humangenetik Campus Medizin